Algebraic Number Theory Mid-sem. test, BMath-3rd Year

INSTRUCTIONS: Solve any **four** problems. Maximum score is 20. Time: 3 hours. You may use results proved in the class without proving them.

- Let I be the ideal (2, 1 + √-3) in the ring Z[√-3].
 (i) Show that I ≠ (2) and I² = 2I.
 (ii) Show that Z[√-3] is not a Dedekind domain. (3+2)
- 2. Let $K = \mathbb{Q}(\sqrt{6})$. Let I be the ideal $I = (2, \sqrt{6}) \subset R$ in the ring of integers $R = \mathbb{Z}[\sqrt{6}]$. Prove that $I^2 = (2)$ and that ||I|| = 2. (5)
- 3. In the number ring $\mathbb{Z}[\sqrt{-5}]$ consider the ideal $I = (1+\sqrt{-5}, 3+\sqrt{-5}, 19+9\sqrt{-5})$. Determine explicit $\alpha, \beta \in I$ such that $I = (\alpha, \beta)$. (5)
- 4. Let K be a number field, \mathcal{O}_K its ring of integers and P a nonzero prime ideal in \mathcal{O}_K . Let $a \in \mathcal{O}_K$ be such that $P \nmid (a)$. Prove that $a^{||P||-1} = 1 \mod P$. (5)
- 5. Let K be a number field and I a non-zero ideal in the ring of integers of K. Prove that $||I|| \in I$. (5)
- 6. Let K be a number field and I and J be nonzero ideals in its ring of integers. Let $I = P_1^{r_1} \cdots P_t^{r_t}$ and $J = P_1^{s_1} \cdots P_t^{s_t}$, where the ideals P_i are prime ideals of \mathcal{O}_K and r_i and s_i are nonnegative integers. Find prime factorizations for gcd(I, J) and lcm(I, J). (5)